The City of Green Administration Building City of Green, Ohio

Brian Koze

Lighting & Electrical

4/13/2011

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

Lighting Redesign

- - - Depth 1: Addition of UPS System

Entrance Structure

- Main Lobby
- Council Chambers
- Planning & Engineering Workspace

Electrical Requirements

- Branch Circuit Redesign
- Depth 2: Panel Consolidation

Mechanical Breadth

Architectural Breadth

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

- - Water Loop Heat Pump vs. Variable **Refrigerant Flow System**

Presentation Contents

 Lighting Redesign Entrance Structure Planning & Engineering Workspace

Electrical Depth

Addition of UPS System

Mechanical Breadth

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

Building Summary

- City of Green, Ohio
 3 stories, 2 above grade
 53,671 SF
- Occupied by various city employees

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

Building Summary

Entrance Structure **Outdoor Space** \bullet

- Planning & Engineering \bullet
 - Work Space

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

Building Summary

Entrance Structure \bullet

Work Space

Outdoor Space

Planning & Engineering

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Create visually interesting, yet professional atmosphere

Enhance occupant experience

Inspiration from building forms

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

- 9'-6" covered walkway leading to clock tower 43' tall at highest point • Canopy ceiling height = 9'-4"

Entrance Structure

Spatial Description

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

9'-6" covered walkway leading to clock tower 43' tall at highest point Canopy ceiling height = 9'-4"

Spatial Description

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

• **Transition** to interior with increasing Illuminance

Minimize Light Pollution

Create focal point without visual clutter

 Meet IESNA Illuminance Values 5 fc Horizontal 3 fc Vertical

Design Criteria

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Entrance Structure

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Entrance Structure

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Entrance Structure

City of Green Administration Building

Introduction

```
Lighting Redesign
```

Electrical Depth

Mechanical Breadth

Entrance Structure

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

- UWLR = 0.016
- Average fc = 6.40

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

 $\Diamond \Box$

Spatial Description

 Ceiling height = 12 ft. • Area = 3120

 Open office No permanent furniture

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

 Achieve balance between space flexibility and existing furniture driven design

Minimize Direct / Reflected Glare

 IESNA Illuminance Criteria 40 fc on work plane • 50 fc maximum

• Add Visual Interest to the space

Design Criteria

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Planning & Engineering Workspace

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

• Average Work plane Illuminance = 35.80 fc

Maximum Work plane Illuminance = 48.2 fc

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Planning & Engineering Workspace

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Planning & Engineering Workspace

City of Green Administration Building

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Planning & Engineering Workspace

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

City of Green Administration Building

Incorporate UPS system to protect important computer systems and servers

• 30 second generator start up time

Locate in large basement server room

 Smaller ground level server room serviced through panelboard

Addition of UPS System

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

- Sized based on 200 W/SF estimate server farm load
- Total Area = 374.7 SF
 - Estimated electrical load = 74.94 kW

Addition of UPS System

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Table B. From Top From Fro

From Ba From Rig From Left

Addition of UPS System

Eaton 9390 UPS (20 – 160 kVA rating)

Meet required clearances

UPS Cabinet Clearances				
o of Cabinet	Minimum clearance over the UPS cabinet is 457.2 mm (18 in.) for ventilation			
ont of Cabinet	914.4 mm (36 inches) working space			
ck of Cabinet	None required			
ght Side of Cabinet	None required			
ft Side of Cabinet	None required			

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

- Change existing Water Loop Heat Pump to a Variable Refrigerant Flow System (VRF)
- Increased efficiency
- Energy Savings

- Assumptions

 - existing equipment

Existing Load Calculations are correct

 New system can be designed based on listed cooling and heating capacity of

Introduction

Lighting Redesign

Electrical Depth

Mechanical **Breadth**

- Numerous unitary heat pumps throughout building
- New system uses localized heat pumps with central compressors
- Locate where noise will not be an issue \bullet

City of Green Administration Building

- Assumptions

 - existing equipment

Existing Load Calculations are correct

 New system can be designed based on listed cooling and heating capacity of

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

- - (125 tons)

Total Cooling Capacity

1,501,300 BTU / hr Total Cooling Capacity

 Energy comparison estimate using typical design values for the area and building type

Description	% Total	Capacity (BTU / hr)	# Hours	BTU
	Сарасіту			
Occupied Cooling	100	1,501,300	328.5	493,177,050
Occupied Cooling	75	1,125,975	438	493,177,050
Occupied Cooling	50	750,650	657	493,177,050
Occupied Cooling	25	375,325	766.5	287,686,612.5
Unoccupied Cooling	33.33	500,383	328.5	164,375,815.5
Unoccupied Cooling	25	375,325	438	164,392,350
Unoccupied Cooling	16.6	249,216	657	163,734,912
Unoccupied Cooling	8.3	124,608	766.5	95,512,032
Occupied Heating	100	750,000	328.5	246,375,000
Occupied Heating	75	562,500	438	246,375,000
Occupied Heating	50	375,000	657	246,375,000
Occupied Heating	25	187,500	766.5	143,718,750
Unoccupied Heating	66.67	500,025	328.5	500,353.5
Unoccupied Heating	50	375,000	438	164,250,000
Unoccupied Heating	33.3	249,750	657	164,085,750
Unoccupied Heating	16.6	124,500	766.5	95,429,250
Totals			1 Year	3,662,341,975

Water Loop Heat Pump vs. Variable Refrigerant Flow System

Introduction

Lighting Redesign

Electrical Depth

Mechanical **Breadth**

City of Green Administration Building

- Total Electricity Cost per Year New System = \$ 19,435.86
- Total Electricity Cost per Year Old system = \$25,153.98
- Total Savings per Year = \$ 5718.12

Water Loop Heat Pump vs. Variable Refrigerant Flow System

Introduction

Lighting Redesign

Electrical Depth

Mechanical Breadth

Questions?